Four reasons why beaver wetlands are paradise for pin lichens

Beaver activity enhances the occurrence and diversity of pin lichens (Caliciales). Both the number of species and individuals is much higher in beaver-created wetlands than in other types of boreal forest landscapes. There are four reasons behind this:

1. High amounts of deadwood. Pin lichens grow on both living trees and deadwood. Decorticated deadwood in particular is preferred by pin lichens. Beaver-induced flooding kills trees in the riparian zone and produces high amounts of decorticated snags.

Pin lichen on decorticated stump. © Mia Vehkaoja

2. Diversity of deadwood types. Beaver activity produces snags, logs and stumps. Snags are created by the flood, whereas logs and stumps are also produced by beaver gnawing. The diversity of deadwood tree species is also wide, containing both deciduous and coniferous tree species. The diversity of deadwood types maintains a high diversity of pin lichen species.

3. High humidity conditions. High humidity conditions are favorable for many pin lichen species. Old-growth forests are usually the only places in the boreal forest belt that contain high humidity conditions. There the shading of trees creates a beneficial microclimate for pin lichens. Lighting, on the other hand, becomes a limiting factor for pin lichens in old-growth forests. Most snags in beaver wetlands stand in water, where steady and continuously humid conditions are maintained on the deadwood surface.

Snags produced by a beaver flood in Evo (southern Finland). © Mia Vehkaoja

4. Sufficient lighting conditions. Because most of the deadwood in beaver wetlands stands in water, it is concurrently in a very open and sunny environment. Many boreal pin lichens are believed to be cheimophotophytic (cheimoon=winter), meaning that they are able to maintain photosynthesis also during winter at very low temperatures. The algae member of pin lichens requires enough light for photosynthesis. Open beaver wetlands make photosynthesis possible for pin lichens during both summer and winter. Snow also enhances light availability during winter.

More information: Vehkaoja, M., Nummi, P., Rikkinen, J. 2016: Beavers promote calicioid diversity in boreal forest landscapes. Biodiversity and Conservation. 26 (3): 579-591.

Advertisements

4 reasons why vanishing deadwood is a great catastrophe

Deadwood amounts have dramatically declined all over the world. Here I present four reasons why deadwood is so important:

1. Deadwood remains in the forest for a long time
When wood decays, it transforms into carbon dioxide, water and minerals. These are exactly the materials that a living tree binds during photosynthesis. The complete degradation of a tree takes 50 to 100 years in northern regions. Deadwood therefore remains a part of the forest ecosystem for a long time, thus enabling the survival of species depending on deadwood as a substrate.

2. Deadwood is nutrition for fungi and invertebrates

Fungi are the main decomposers of deadwood, but bacteria and invertebrates also take part in the decaying processes. These organisms have special digestive compounds, enzymes, to cut the wooden structure into more easily digestible forms. This works in the same way as the enzymes in our own stomachs that cut the food we eat into more usable shape. Fungi can be divided into three main decomposer groups: white, brown and soft rot. White-rot fungi, e.g. Phellinus nigrolimitatus, lives mainly on deciduous wood, whereas brown-rot fungi, such as Coniophora olivacea, are mostly in charge of decomposing conifers. Beetles (Coleoptera), ants (Formicidae) and termites (Isoptera) are examples of invertebrates that use deadwood as a form of nutrition, but e.g. pin lichens (Calicioid) can also more or less decompose wood.

Pin lichens (Calicioids) grow on deadwood surface. © Mia Vehkaoja

Pin lichens (Calicioids) grow on deadwood surface. © Mia Vehkaoja

3. Deadwood is home for animal offspring
Deadwood is home for thousands of species. For some species deadwood can be an incubation place and a safe nest for newborn offspring. Several beetles and termites lay their eggs inside deadwood, where the hatching larvae are safe in their own chambers. As for Nematocera, Brachycera and Aculeata, the deadwood-decomposing fungi functions as a rearing place for larvae. In addition to invertebrates, birds, bats and flying squirrels (Pteromys volans) also use the holes in deadwood as nesting places. Furthermore woodpeckers (Picidae) as cavity nesters are a good indicator for deadwood abundance.

Several beetle species lay their eggs inside deadwood. © Mia Vehkaoja

Several beetle species lay their eggs inside deadwood. © Mia Vehkaoja

4. The disappearance of deadwood creates local extinctions at the very least
Nowadays deadwood is a dying natural resource. Forestry has decreased the amount of deadwood in Finnish forests by over 90%, concurrently causing the local extinctions of several species. Species that depend on deadwood throughout their entire lives are at greatest risk. Such species include the fungi Phellinus igniarius and the three-toed woodpecker (Picoides tridactylus).

Beavers restore the dead wood of boreal forests

Dead wood is a necessary element for numerous species living in the boreal zone. It functions as a food resource, nesting space or growth substrate for several mammals, fungi, insects, and birds. Dead wood is produced through two main mechanisms: senescence and disturbances e.g. forest fires or wind damage. A controlled forest has less ageing trees and disturbances, and currently up to 90% of Fennoscandian forests have been influenced by forest management. The recent drop in dead wood levels due to intensive forest management across the globe has concurrently led to dead wood-dependent (= saproxylic) species becoming rare as well, which weakens food webs and ecosystem functionality. Managed forests may only contain a few cubic meters of dead wood per hectare, while dead wood levels in old-growth forests and forests influenced by disturbances can rise up to hundreds of cubic meters per hectare.

Beaver, the ecosystem engineer © Sari Holopainen

Beaver, the ecosystem engineer © Sari Holopainen

Strong disturbances are less frequent in moist lowland areas of the boreal zone, where dead wood is mainly created as single trees die due to competition and ageing. However, beavers act as wetland ecosystem engineers, raising floodwaters through the damming of water systems. These floodwaters kill surrounding shore forests due to oxygen deprivation, thus creating significant amounts of dead wood into the habitats. In certain cases the flooding may kill entire forest stands. Beavers can therefore be considered the main natural disturbance factor of lowland forests.

Beavers require wood for food and as a building material for their nests and dams. Foraging for woody materials causes the resource to run out within a few years, forcing the beavers to move location. The process of flooding and dead wood creation begins again in a new area, thus producing a continuation of dead wood hotspots into the landscape. Eventually after several years the beavers can return to a previously inhabited location, which will be then be repeatedly subjected to their engineering. These hotspots may be very important to dead wood -dependent species, especially as they uphold a network and continuous supply of different-aged dead wood.

Calculating dead wood levels at a beaver flood - spot the researchers! ©Mia Vehkaoja

Calculating dead wood levels at a beaver flood – spot the researchers! ©Mia Vehkaoja

Despite an overall decrease in dead wood levels, certain types of dead wood have become rarer in the boreal forest than others. Currently the rarest forms are standing dead trees (snags) and deciduous dead wood. Both have declined more rapidly than other types due to forest management actions and attitudes. Beavers create a broad range of dead wood types (e.g. downed wood, stumps and coniferous dead wood), but they particularly aid in the production of snags and deciduous dead wood. This is good news for many saproxylic species, as these organisms are often strongly specialized, utilizing very specific dead wood types.

The dead wood produced by beaver-induced flooding is also very moist, which may affect the wood-decay fungi species that begin colonizing the dead wood. For example, sac fungi are more tolerant of wet conditions, and may therefore outcompete Basidiomycetes at beaver sites. This in turn will lead to differing invertebrate communities that utilize sac fungi instead of Basidiomycetes. Very different dead wood –dependent species assemblages may therefore be formed at beaver sites compared to fire areas of clear-cuts. The interactions of these species are currently poorly understood.

The beaver offers a possibility for all-inclusive ecosystem conservation compared to the conservation of single species. The species could be used to produce dead wood and restore the shore forests of wetlands.

Our research group has recently published an article concerning the impacts beavers have on boreal dead wood. The article can be accessed from http://www.sciencedirect.com/science/article/pii/S0378112715005757

Calculating dead wood levels at a beaver flood - spot the researchers! ©Mia Vehkaoja

Calculating dead wood levels at a beaver flood – spot the researchers! ©Mia Vehkaoja

Hot spots of boreal landscape

The beaver (Castor spp.) is a known ecosystem engineer that modifies its environment quite drastically. It builds a dam and raises floodwaters into surrounding forests, killing trees, and releasing organic material into riverine systems and lakes. The rising water level changes both the abiotic and biotic conditions of a wetland. Many organisms, from water lice to water birds, benefit from these changes. Beavers facilitate these species by offering both nesting and sheltering areas in the form of low bushes and trees by the water’s edge, increased aquatic plant communities for nutrition, and ice-free water areas for extended periods.

Beaver-created wetlands are cyclic ecosystems. Beavers usually inhabit a site for one to three years and then move to the nearby site, where the whole process starts again. After the beaver has left the site, the abandoned site reverts quite slowly back to the original. So the beaver’s actions endure much longer than they occupy the site, and commonly they return to former sites within 10 years.

 

Beaver-created wetlands can be seen as a biodiversity hot spots. This pic is from eastern Finland. © Mia Vehkaoja

Beaver-created wetlands can be seen as a biodiversity hot spots. This pic is from eastern Finland. © Mia Vehkaoja

The beavers’ actions can be seen as quite sharp shifts in an ecosystem, but the very nature of the changes that the beavers create tends to be rather stable. As the beavers transform the ecosystem they also enable resilience in landscapes. Beaver-created wetlands increase the heterogeneity of the landscape, and can be seen as biochemical and biodiversity hot spots. They maintain several declining species, especially in the northern Boreal Hemisphere, where eutrophic wetlands are relatively rare.
The EU has an ongoing project called the Return of Rural Wetlands. The size of the EU funding in this project in Finland is a little over a million Euros. The other million Euros come from the Finnish Government and the rest from the Finnish Wildlife Agency. The aim of the project is to create a new frame and a good start for the future nationwide program for wildlife habitat conservation, restoration and re-creation. So people are creating new wetlands using tractors and diggers, and by bringing soil and water from elsewhere.

Beavers would do the same work for free. Instead of misspending lots of money on labor, expensive machines and moving earth, we could use some part of the funding to re-introduce the European beaver (Castor fiber) to a wider area. In this way we would save money, get the same results, if not even better ones, and help our original, once extinct species to recover. In addition, Finland would achieve the obligations of EU Inland Water Directive.

The new re-introduction of the European beaver project would involve the same interest groups as the Return of Rural Wetlands project. Some of the re-introductions could be conducted on state-owned lands and some on privately owned land. There are several local landowners involved in the Return of Rural Wetlands project, so there is a good possibility that they would be interested in the same kind of project as well. Regional hunting clubs would want to be involved, as beaver-created wetlands offer improved hunting and fishing opportunities, because their habitat engineering increases the number of game and fish species. It might be easy to get regional authorities and policymakers to engage in the project, because of the EU obligations that abide them. Furthermore, the policymakers would conserve the biodiversity of Finland, and gain the respect of The Finnish Association for Nature Conservation and the public. When all these interest groups are involved in and the role of power is divided to various levels, a revolution in wetland creation is possible. When such a project succeeds in Finland, it should be possible to implement it also in other EU countries.

 

The Mallard (Anas platyrhynchos) favors beaver-created wetlands, especially during breeding season. © Mia Vehkaoja

The Mallard (Anas platyrhynchos) favors beaver-created wetlands, especially during breeding season. © Mia Vehkaoja

The beaver’s actions extend wider than just creating suitable wetlands for several species. Beaver-created wetlands produce high amounts of dead wood. Dead wood is a decreasing natural source and the species dependent on dead wood are under threat. There are numerous bryophyte, lichen and beetle species that rely on moist dead wood. The resilience of beaver-created wetlands is more general than specified, as its transformability reaches from wetlands into the forest.

Beavers provide also other ecosystem services to humans. They mitigate flood peaks by retaining rainwater and drought conditions by slowly releasing water. Beaver-created wetlands act as buffer zones by filtering impurities, e.g. heavy metals, thus increasing water quality. They facilitate and conserve endangered and declined species, and create interesting hiking and relaxation possibilities for humans. All in all, beaver-created wetlands are one of the key ecosystems in boreal areas to be conserved.

A whole new universe in dead wood

Before I took part in the course Biodiversity in dead wood (organized by the University of Helsinki), I thought that there is dead wood only aboveground. So it was an elevating experience to realize that most of the dead wood is underground. Boreal forests have more underground dead wood than for example broadleaved forests. Underground dead wood is very common in Finland as there are lots of pine-dominant bogs. There pines sink underground before they are decayed, and lots of underground dead wood is produced.

Standing dead pine, possible becoming a kelo. © Stella Thompson

Standing dead pine, possible becoming a kelo. © Stella Thompson

One other special characteristic for Finland forests is kelo, which is a dead standing pine. Usually the kelo has lost its pine bark. Kelo trees have unique biodiversity, which is completely different than for example in dead birch. It is quite typical that the saproxylic species are specific to certain tree species. This feature enhances the saproxylic diversity in forests. Saproxylic species are defined as any species that depends upon decaying woody material.

The carboniferous was a starting point for saproxylic evolution. Almost immediately when the first trees arrived on land, the first decomposing fungi evolved. After fungi the first decomposing invertebrates developed. The rapid specification of the saproxylic species occurred in the Triassic and Jurassic ages. The first termites existed about 100 million years ago. The evolution of saproxylic beetles is better known than the evolution of basidiomycetes. This is due to better preserved fossils.

There are approximately 400 000–1 000 000 saproxylic species in the world, and in the Nordic countries the same number is 7589 known species. Finland alone has 4 000–5 000 dead wood species. This is about 20–25 % of all forest species. It could be argued that there are several unknown saproxylic species in the Nordic countries. Solely in Finland, almost every year new saproxylic species are found. Boreal forests have almost as much dead wood as tropical forests. This correspondence between the two forest types results from the different decaying rates.  The decaying rate of tropical forests is much faster.

Basidiomycetes decaying goat willow (Saprix caprea). © Stella Thompson

Basidiomycetes decaying goat willow (Saprix caprea). © Stella Thompson

The decaying rates also differ in different parts of boreal forests. In the fast-decaying parts 90% of organic matter can be decomposed in 50 years, whereas the same process will take 100 to 200 years in the slow-decaying parts. At an early successional stage the decaying process is usually slow and accelerates towards the pristine forest stage. The main hazard to saproxylic species is forestry. For instance in Finland forestry has reduced the amount of dead wood from 60–120 m3 per hectare to 2–10 m3 per hectare. This reduction is severe. The new trend in forestry, at least in the Nordic countries, is bio-fuel in the form of intensive residue harvesting. This means that even the branches, crowns, and stumps are collected from the logging area. This leads to an even more decreased amount of dead wood in forests. It can be quite easily calculated that without dead wood about 25% of Finland’s forest species are lost. Why is nobodytaking strong action to prevent this from happening? Researchers and conservationists should come together, and force decision-makers to see the dramatic downside of residue harvesting.

Dead wood on top of lingon- and blueberries in boreal forest. © Mia Vehkaoja

Dead wood on top of lingon- and blueberries in boreal forest. © Mia Vehkaoja

 

Check out also this amazing article about Ancient Forest Found Thawing Beneath Melting Glacier in Alaska