Protecting one of the largest economies in the world

Wetland  ecology group_University of Helsinki_shallow waters of the Baltic Sea

Shallow waters of the Baltic Sea © Stella Thompson

Implementing the Red List of Ecosystems (RLE) has kicked off to a good start. I introduced this fairly new conservation method in a previous blogpost (https://encounterswithwildlife.wordpress.com/2015/09/30/the-red-list-of-ecosystems-assessing-the-extinction-risk-of-ecosystems/). So far trial studies have been conducted in cooperation with IUCN on all continents apart from Africa and Antarctica. Several countries (e.g. El Salvador, Costa Rica, Marocco, Senegal) have additionally completed or nearly completed drafts for the RLE assessment of their ecosystems. Norway, Finland, and Australia are furthest in the task of implementing RLE categories and criteria into their national nature conservation standards and biodiversity legislation. A quick look at the different ecosystems encompassed so far reveals that various mires, wetlands, shore environments, coral reefs, and temperate and boreal forests are fairly well represented.

The Southern Hemisphere in particular has stepped up in the concrete utilization of RLE in assessing the health and collapse risk of ecosystems. Through a series of 13 studies, Australian researchers have determined that RLE is a functional tool for classifying and assessing various ecosystems. This has concurrently revealed several practical measures for promoting ecosystem conservation. Within the next couple of years the assessments will be extended to include all ecosystems in Australia. Factors most strongly weakening the health of Australian ecosystems have been gathered together. It is hardly surprising that climate change plays a large part, impairing ecosystems from rainforests to oceans and deserts to dry meadows. However, each ecosystem faces unique challenges at its own pace. This supports the all-round utilization of RLE. We cannot kid ourselves that conserving a few currently unwell ecosystems would be sufficient, but we must also take into consideration the probable changes that will occur in presently healthy or nearly healthy ecosystems in the near future. The future viewpoint should unquestionably be included in national RLE assessments.

A concurrent armament race seems to be ongoing concerning marine conservation; during 2015 at least four countries announced plans of founding the largest marine conservation areas in the world. The Kermadec nature reserve in the Pacific waters of New Zealand will span 240 000 mi2 (620 000 km2), while Great Britain is planning three protection zones in the Pacific and Atlantic Oceans with a combined area of 695 000 mi2 (1 8000 000 km2). Palau ratified the establishment of a 193 000 mi2 (500 00 km2) nature reserve, and Chile declared intentions of founding a marine sanctuary in the waters of Easter Island, covering 243 200 mi2 (630 000 km2). Complete RLE assessments should be conducted on each of these soon-to-be-founded zones, to find the areas that would most benefit from improvement. Assessments have indeed been planned for some of the reserves.

Marine conservation is geared towards securing important growth, spawning, reproductive, and feeding areas. Protecting specific ecosystems, e.g. underwater volcano chains, and securing fishing possibilities are also paramount. A recent WWF report (downloadable at http://wwf.panda.org/wwf_news/?244770/Ocean-wealth-valued-at-US24-trillion-but-sinking-fast) calculates the combined economic value of oceans at $24 trillion. The products and services attainable from oceans is valued at $2.5 trillion. If they were an independent nation, the world’s oceans would be the seventh largest economy on the globe, ranking between Great Britain and Brazil. However, the WWF report concludes that the biodiversity of oceans has decreased by nearly 40% during 1970–2010 due to climate change, seawater acidification, and overfishing. Currently two thirds of our fishing waters have been completely utilized. Most of the remaining areas are over- rather than underexploited. The economic value of oceans is presently dwindling rapidly as marine ecosystems weaken and collapse.

Wetland  ecology group_University of Helsinki_fishing boats on the Atlantic

Fishing boats on the Atlantic Ocean © Stella Thompson

The oceans and seas have long been the Wild West of our planet, where utilization and downright exploitation are permitted with little or no rules (the so-called “tragedy of the commons”). Legislation lags behind the current situation, but founding enormous nature reserves is an excellent way to uphold ocean ecosystem health, at least from the viewpoint of reducing raw material overexploitation. But even huge conservation zones are not sufficient to control the negative effects of climate change.

Marine sanctuaries are an indication of how much we can do to uphold and maintain ecosystem health, especially when national authority and decision-making is combined with international cooperation. Unfortunately the similar protection of land ecosystems is proving more difficult because of intense land use and strict land ownership. The above-mentioned four marine sanctuaries will have a total surface area of approximately 75% of the surface area of the European Union. Conserving such a massive land area would be demanding. International cooperation is the only way forward when dealing with these challenges.

 

More on the planned marine sanctuaries:

http://www.theguardian.com/world/2015/sep/29/new-zealands-new-ocean-sanctuary-will-be-one-of-worlds-largest-protected-areas

http://www.theguardian.com/environment/2015/feb/10/conservationists-call-for-uk-to-create-worlds-largest-marine-reserve

http://www.theguardian.com/environment/2015/oct/22/palau-approves-huge-pacific-marine-sanctuary

Advertisements

Amphibious sea snakes – torn in between

When I attended the International Wildlife Management Congress (5th IWMC) in Sapporo Japan, I was blown away with a very interesting group of sea snakes: the amphibious sea snakes (Laticaudinae), also known as sea kraits. They possess traits of both land and sea snakes. They are kind of torn between living on land or in the ocean. Their evolution has led to characteristics that enable them to live in both environments, at least for certain periods at a time. But these multiple skills come with a trade-off. For example the locomotion ability in aquatic environments may reduce their terrestrial locomotor ability and vice versa. Even though terrestrial crawling and aquatic swimming are superficially similar activities in snakes, they need different substrates to produce the motion. In general sea kraits move over twice as fast in water than on land.

The ability to move on land is based on both their ventral scales, which are wide just as with land snakes, and their poorly developed tail fins. Sea kraits also use land as their freshwater source. Even though they have a salt gland to excrete the excess salt, they also have to drink freshwater to obtain a proper water balance within their bodies. The freshwater resources that sea kraits use are rainwater, estuaries and sea springs. Estuaries are used by all species, not just to drink freshwater, but also to hide.

The reproduction of amphibious sea snakes differs from true sea snakes (Hydrophinae). Firstly, they are oviparous, whereas true sea snakes are viviparous. Viviparous means that snakes give birth to live young. Oviparous on the contrary means the animal lays eggs and the offspring hatch from them. Sea kraits return to land to mate and lay eggs. The eggs are laid in nests fulfilling certain specific condition.

Sea kraits have lungs for breathing. They therefore need to surface every 15 minutes on average to breathe. The breaking of the surface may take only a split second while a sea krait takes a breath of air and dives again. Most of their time they spend at sea in shallow tropical reefs, which are threatened in several ways. Agricultural and urban runoff, in addition to both organic and inorganic pollution are one of the main threats to shoreline tropical reefs. Many sea krait species are considered vulnerable or nearly threatened. Hopefully we will be able to conserve these interesting and mesmerizing creatures of the oceans before it’s too late.